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General remarks

Combinatorics was already a well-established
mathematical discipline, new results published in respected
journals (Math. Ann., J. Lond. Math. Soc., Amer. J. Math.)
Key results were often discovered while investigating other
topics (group theory, almost-periodic functions)
Graph theory had a bad reputation as a science of trivial
problems, new results often formulated in the language of
matrices or topological structures; first textbook published
in 1936
Numerous results were motivated by practical problems
(design of experiments, construction of electricity
networks, enumeration of chemical compounds)
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Main research topics in combinatorics

1 Latin squares and block designs, their relation to finite
projective planes and algebraic structures, applications in
the design of experiments

2 Beginnings of combinatorial set theory (Hall’s marriage
theorem and related results, Sperner’s theorem)

3 Beginnings of Ramsey theory
4 Graph theory
5 Additional topics (Redfield–Pólya enumeration theory,

Whitney’s matroid theory, integer partitions)
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Latin squares

A Latin square of order n is an array consisting of n rows and
n columns. Each cell contains a number from the set {1, . . . ,n}
in such a way that each number occurs exactly once in each
row and exactly once in each column.

There exist Latin squares of an arbitrary order n, but no efficient
formula giving their total number is known.

R. A. Fisher, F. Yates (1934): There exist 812 851 200
squares of order 6.
B. D. McKay, I. M. Wanless (2005): Number of squares of
order 11 (ca. 8 · 1047)
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Orthogonal Latin squares

A pair of Latin squares⇒ a square containing n2 pairs of
numbers from {1, . . . ,n}

If each ordered pair (i , j) occurs exactly once throughout the
array, the two Latin squares are said to be orthogonal (also:
a Graeco-Latin square).
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36 officers problem

Leonhard Euler (1776, 1782):
36 officers problem: Is it possible to arrange six regiments
consisting of six officers each of different ranks in a 6× 6
square such that no row or column duplicates a rank or a
regiment?

Denote regiments and ranks by letters:
a,b, c,d ,e, f correspond to regiments, α, β, γ, δ, ε, ζ correspond
to ranks.

Each arrangement of the 36 officers corresponds to a 6× 6
array consisting of pairs of letters; each ordered pair appears
exactly once. Each Latin and each Greek letter is contained
exactly once in each row and each column.

Hence, the problem is equivalent to the construction of a pair of
orthogonal Latin squares of order 6.
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Euler’s conjecture

Leonhard Euler (1776, 1782):
If n is odd or divisible by four, then there exist orthogonal
Latin squares of order n.
There are no orthogonal Latin squares of order 2.
Conjecture: There are no orthogonal Latin squares of
order 6. More generally, there are no orthogonal Latin
squares of order 4k + 2.

Gaston Tarry (1900): The conjecture holds for n = 6 (34 pages,
analysis of 17 types of Latin squares)
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Systems of orthogonal Latin squares

Do there exist systems of more than two Latin squares of
order n, each two of which are orthogonal?
N(n) = maximum number of mutually orthogonal Latin squares
of order n
Euler’s conjecture: N(4k + 2) = 1
Observation: N(n) ≤ n − 1
Harris F. MacNeish, Euler Squares (Ann. of Math., 1922):

If n is a prime power, then N(n) = n − 1.
Given k mutually orthogonal Latin squares of order m and
k mutually orthogonal squares of order n, it is possible to
construct k mutually orthogonal Latin squares of order mn.
Thus, N(nm) ≥ min(N(n),N(m)).
If n = pr1

1 · · · p
rk
k , then N(n) ≥ min(pr1

1 , . . . ,p
rk
k )− 1. Does

equality hold? (Generalization of Euler’s conjecture)
Wrong proof of Euler’s conjecture
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Finite projective planes (1)

A finite projective plane is a pair of finite sets X (“points") and
P ⊂ P(X ) (“lines") with the following properties:

1 Every two lines p1,p2 ∈ P intersect in a unique point
(|p1 ∩ p2| = 1).

2 Every two distinct points x1, x2 ∈ X determine a unique line
p (x1, x2 ∈ p).

3 There exist four points no three of which lie on a single line.

1 2 4

3

5

7

6
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Finite projective planes (2)

The following statements hold for each finite projective plane:
Every two lines have the same number of points.
The number of lines equals the number of points.

If each line has n + 1 points, we speak of a finite projective
plane or order n.

The smallest finite projective plane has order 2, and
consists of 7 points and 7 lines.
A plane of order n has n2 + n + 1 points as well as lines.

For which numbers n does there exist a finite projective plane
of order n?
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Existence results (1)

Frank Yates, Incomplete randomised blocks (Annals of
Eugenics), 1936: If there exist n − 1 orthogonal Latin squares
or order n, then there exists a finite projective plane of order n.
(formulated in the language of block designs)

It is known that completely orthogonalized squares exist when
the side is a prime number and also for sides 4, 8 and 9. It is
also known that no such square of side 6 exists. Higher
non-primes have not been investigated.
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Existence results (2)

Raj Chandra Bose, On the Application of the Properties of
Galois Fields to the Problem of Construction of
Hyper-Graeco-Latin Squares (Sankhya: The Indian Journal of
Statistics), 1938:
Professor Fisher, during his recent visit to India, in a Seminar held
under the auspices of the Statistical Institute, made the surmise that it
should be possible to construct a Hyper-Graeco-Latin square for
every value of p, which is a prime or a power of a prime. The object of
this paper to prove that this surmise is correct, by using the properties
of Galois Fields.

Theorem
A finite projective plane of order n exists if and only if there exist
n − 1 orthogonal Latin squares or order n.

Explicit construction of orthogonal Latin squares using finite
fields.
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Algebraic connections

Let n = pk , where p is a prime. Then there exists a finite field
GF (pk ) having n elements (Galois field):

GF (pk ) = {g1, . . . ,gn}

For each choice g ∈ GF (pk ) \ {0}, the matrix with elements

aij = g · gi + gj , i , j ∈ {1,2, . . . ,n}

is a Latin square of order n.
Different choices of g lead to n − 1 distinct Latin squares, each
two of which are orthogonal.
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Later results

E. T. Parker, 1959: There exist 4 orthogonal squares of
order 21⇒ MacNeish’s conjecture is wrong
R. C. Bose, S. S. Shrikhande, 1959: There exist orthogonal
squares of order 22⇒ Euler’s conjecture is wrong
R. C. Bose, E. T. Parker, S. S. Shrikhande, 1960: For each
n ∈ N except 2 and 6, there exist orthogonal Latin squares of
order n.

The existence of finite projective planes whose order is not a
prime power remains open. They do not exist for n = 6 (Tarry
1900), n = 10 (Lam 1991, computer search). The existence for
n = 12 is an open problem.
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The end of Euler’s conjecture

Title page of New York Times, April 26, 1959
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Latin squares and the design of experiments

The interest in Latin squares and related structures was fuelled
by applications in the design of agricultural experiments.
The pioneer of the use of combinatorial and statistical methods
in experiments was Ronald Aylmer Fisher (1890–1962). He
spent the years 1919–1933 at the Rothamsted Experimental
Station, where he worked on the design and analysis of field
experiments.
Fisher’s work was summarized in 3 highly influential books, all
of which contain passages devoted to Latin squares: Statistical
Methods for Research Workers (1925, 14 editions), The Design
of Experiments (1935, 9 editions), Statistical Tables for
Biological Agricultural and Medical Research (1938, 6 editions,
4 reprints).
The last book was written together with Frank Yates (1902–1994),
who became assistant statistician at the Rothamsted Station in
1931, and took over Fisher’s position in 1933.
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An experiment with potatoes in Ely, 1932

The goal of the agricultural experiments was to verify the
effectivity of various fertilizers, herbicides, insecticides, etc.
An example from Fisher’s book The Design of Experiments:
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Ronald A. Fisher and Frank Yates
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Block designs (1)

Steiner triple system:
A system of three-element subsets of {1, . . . ,n} such that each
pair i , j ∈ {1, . . . ,n} occurs in exactly one subset.

The number of blocks in each Steiner triple system is n(n−1)/6
(the number of pairs is n(n − 1)/2, each block contains three of
them).

Steiner triple system exists if and only if n = 6k + 1 or
n = 6k + 3 (Thomas P. Kirkman 1847, Jakob Steiner 1853)
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Block designs (2)

Block design:
A system of k -element subsets of {1, . . . ,n} such that each
pair i , j ∈ {1, . . . ,n} occurs in exactly ` subsets.
Example: n = 10, k = 4, ` = 2

The number of blocks in each block design is b = ` n(n−1)
k(k−1) .

Design of experiments: Testing n objects, a single experiment
involves k objects. Instead of testing all possible subsets of
size k , we choose only b of them in such a way that each pair
of objects is tested ` times.
Projective plane of order N = block design with blocks
corresponding to lines, k = N + 1, ` = 1, n = b = N2 + N + 1.
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Block designs (3)

Block designs were introduced by F. Yates (Incomplete
randomised blocks, Annals of Eugenics, 1936)
R. A. Fisher, F. Yates: Statistical Tables for Biological
Agricultural and Medical Research – tables of block designs
Open problem: For which values of n, k , ` does there exist
a corresponding block design?
R. A. Fisher (1940): If k < n, a necessary condition for the
existence of a block design is that b ≥ n (an experiment with
n objects requires at least n blocks), i.e., `(n − 1) ≥ k(k − 1).
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Hall’s theorem, set-theoretic version

Let A1, . . . ,An be subsets of a set X . A system of distinct
representatives is a collection of n distinct elements x1, . . . , xn
such that xi ∈ Ai for all i ∈ {1, . . . ,n}.

Theorem (Philip Hall, 1935)
Subsets A1, . . . ,An of a finite set X have a system of distinct
representatives if and only if for each ` ∈ {1, . . . ,n}, the union
of arbitrary ` sets from A1, . . . ,An contains at least ` elements.

Application (Marshall Hall, 1945): A Latin rectangle can be
always extended to a Latin square.
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Hall’s theorem, graph-theoretic version

Theorem
Let G = (V ,E) be a bipartite graph with parts V1 and V2. There
exists a matching covering V1 if and only if each set of
` vertices from V1 has at least ` neighbors.

“Marriage version" (due to H. Weyl, 1949):
Given n distinct objects a1, . . . ,an (boys) and n distinct objects
b1, . . . ,bn (girls); moreover a scheme of linkage Qn according
to which an ai and a bk are either linked (friends) or not linked.
What is the necessary and sufficient condition that the boys
can be paired with the girls in such a fashion that in each of the
n pairs the partners are friends?
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Hall’s theorem – a brief history

D. Kőnig (1916): Each regular bipartite graph has a perfect
matching.
D. Kőnig (1916), G. Frobenius (1917) – matrix version of
Hall’s theorem: Let A be an n × n matrix. Then all terms in
the definition of detA are zero, if and only if A contains a
zero submatrix with dimensions k × `, where k + ` = n + 1.
D. Kőnig (1931), J. Egerváry (1931): The maximum size of
a matching in a bipartite graph is equal to the size of a
minimum vertex cover. (vertex cover = collection of vertices
incident with each edge of the graph)
P. Hall (1935): Set-theoretic version, inspired by a result in
group theory by van der Waerden
H. Weyl (1949): Almost-periodic functions, simpler proof
P. Halmos, H. Vaughan (1950): Short elegant proof of
Hall’s theorem, extension to infinite systems of sets, harem
version of Hall’s theorem
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Sperner’s theorem

Emanuel Sperner, Ein Satz über Untermengen einer endlichen
Menge, 1928:

Consider an n-element set X . What is the largest possible
family of subsets of X such that no subset is contained in
another subset?

Observation: The family of all k -element subsets of X has
size

(n
k

)
, no k -element subset contains another one.

Theorem
The largest possible family of subsets of X none of which
contain any other sets in the family has

( n
bn/2c

)
elements.

Possible motivation: Given a square-free integer N, what is the
maximum number of its positive divisors, no one of which
divides any other? (Note: divisor↔ set of all primes occuring in
its factorization)

Antonín Slavík Combinatorics Between the World Wars



Schur’s theorem

Theorem
For each k ∈ N, there exists an S(k) ∈ N such that in each
partition of the set {1, . . . ,S(k)} into k classes, there exist
numbers x, y, z belonging to the same class and satisfying
x + y = z.

partition into k classes = coloring using k colors, existence of a
monochromatic solution to x + y = z

Example: S(2)=5 1 2 3 4

Issai Schur, Über die Kongruenz xm + ym ≡ zm (mod p), 1916:

An elegant proof of a result by Leonard E. Dickson: For a fixed
m ∈ N, there exists a p ∈ N such that the congruence
xm + ym ≡ zm (mod p) has a solution.
(relation to Fermat’s Last Theorem)
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Van der Waerden’s theorem

Van der Waerden, Beweis einer Baudetschen Vermutung, 1927:

Theorem
For each pair k, l ∈ N, there exists a number W (k , l) ∈ N with
the following property: If the set {1, . . . ,W (k , l)} is partitioned
in an arbitrary way into k classes, then one class contains an
arithmetic progression of length l.

Example: W(2,3)=9 1 2 3 4 5 6 7 8

Pierre J. H. Baudet’s conjecture corresponds to k = 2
The conjecture was stated not only by P. J. H. Baudet, but
independently also by I. Schur
Result published in Nieuw Archief voor Wiskunde, became
popular after its appearance in Three pearls of number
theory (Russian 1947, German 1951, English 1952) by
Aleksander Khinchin, who learned about the result from
van der Waerden in Göttingen

Antonín Slavík Combinatorics Between the World Wars



Ramsey’s theorem

Frank P. Ramsey, On a problem of formal logic, 1930:

Theorem
For each triple r , n, k ∈ N, there exists an M ∈ N such that the
following statement holds for each m ≥ M: If we partition all
r -element subsets of the set {1, . . . ,m} into k classes, there
exists an n-element subset of {1, . . . ,m} whose r-element
subsets all belong to the same class.

r = 1: Pigeonhole principle
r = 2: If the edges of the complete graph Km are colored
using k colors, there exists a monochromatic complete
subgraph with n vertices.
(Among six people either at least three of them are mutual
strangers or at least three of them are mutual
acquaintances.)
Main topic of the paper is satisfiability of logical formulas
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Erdős-Szekeres theorem

P. Erdős, G. Szekeres: A combinatorial problem in geometry,
1935:

Theorem
For every n ∈ N, there exists an ` ∈ N such that any set of at
least ` points in the plane in general position has a subset of
n points forming a convex polygon.

First proof based on Ramsey’s theorem
New proof of Ramsey’s theorem including an estimate for `
Second proof based on the following result: An arbitrary
sequence of rs + 1 real numbers contains a nondecreasing
subsequence of length r + 1 or a nonincreasing
subsequence of length s + 1.
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Four-color problem (1)

An important source of progress in graph theory was the
ongoing work on the resolution of the four color conjecture
proposed in 1852 by Francis Guthrie.
Although the 1879 proof by Kempe turned out to be incorrect,
his idea of reducible configurations and unavoidable sets of
configurations finally led to the computer-assisted proof of the
conjecture in 1976 by Appel and Haken.
In the meanwhile, some important results were obtained by
Philip Franklin (1898–1965). In 1922, he discovered new
reducible configurations, and showed that every irreducible
map must contain more than 25 regions. Thus, he verified the
four color conjecture for each map containing at most 25
regions. The problem of coloring maps makes sense not only in
the plane, but on other surfaces as well. In 1934, Franklin
improved a result by Percy John Heawood by showing that for
the Klein bottle, six colors always suffice.
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Four-color problem (2)

George D. Birkhoff (1912): P(λ) = the number of ways of
coloring the map in λ colors. P is a polynomial of degree n,
where n is the number of regions – the chromatic polynomial of
a given map. Birkhoff found a formula for the coefficients of P.
The four-color problem is equivalent to P(4) > 0 for all maps.
Birkhoff was intrigued by the four-colour problem, and in later years
he regretted that he had wasted so much time on it. But he also
declared that every great mathematician had at some time attacked
the problem, and had, for a while, believed himself successful. From
his son, Garrett, we learn that he would ask his wife to prepare
suitably complicated maps for him to colour: Mrs. Birkhoff’s opinion of
this task has not been recorded. (Biggs, Lloyd, Wilson)

Hassler Whitney (1932) – dissertation on graph coloring
supervised by Birkhoff; extension of chromatic polynomial to all
graphs, a simple proof of formulas for the coefficients; it suffices
to study the four-color problem for Hamiltonian graphs
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Graph theory – additional results (1)

Characterization of planar graphs:
Kazimierz Kuratowski (Sur le problème des courbes
gauches en Topologie, 1930): a graph is planar if and only
if it does not contain a subgraph homeomorphic to K5 or
K3,3; more general formulation in terms of topological
notions (continuum)

Hassler Whitney (1932, 1933): definition of an abstract
dual graph; a graph is planar if and only if it has an abstract
dual
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Graph theory – additional results (2)

Menger’s theorem:
Karl Menger (Zur allgemeinen Kurventheorie, 1927):
Let A, B be two disjoint sets of vertices. Then there exist
n vertex-disjoint paths between A and B if and only if A, B
cannot be separated by deleting n vertices.
Menger’s comment (1981): Some graph theorists may be
surprised to learn that this graph theoretical assertion first came
up in 1926 as a lemma in proving an extremely general theorem
of set theoretical curve theory.

Cayley’s formula:
Arthur Cayley (1889): The number of trees on n labeled
vertices is nn−2; rigorous proof is missing.
Heinz Prüfer (Neuer Beweis eines Satzes über
Permutationen, 1918): Bijection between trees and
sequences of numbers from {1, . . . ,n} of length n − 2.
(In how many ways is it possible to connect n cities using
a railroad network?)
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Minimum spanning tree (1)

Given a connected weighted graph, find its minimum spanning tree.
The first algorithm for solving this problem was proposed by the
Czech mathematician Otakar Borůvka in 1926.
The problem was suggested to Borůvka during World War I by
his friend Jindřich Saxel, who worked for the West-Moravian
Powerplants, and stated the problem in terms of cities and the
distances between them. Borůvka was offered a job with
West-Moravian Powerplants, but he declined.
Borůvka’s 1926 paper was written in Czech with a German
summary, and the whole problem was stated in the language of
matrices, whose elements correspond to edge weights. The
final paragraph contains the following geometric interpretation:
Consider n points in the r -dimensional space, whose distances
are pairwise distinct. The problem is to connect them by a
network whose total length is as small as possible.
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Minimum spanning tree (2)

Borůvka’s description of the algorithm for finding the optimal
solution is long and complicated, but becomes much more
transparent when reformulated in graph-theoretical language:
Begin by joining each vertex with its nearest neighbor, obtaining
a certain forest. For each component, add the shortest edge
joining it to a different component, and repeat this step until
obtaining a connected graph.
Essentially the same explanation, but without using
graph-theoretical terminology, was given in Borůvka’s
subsequent two-page paper published in a Czech journal aimed
at electrical engineers. Borůvka noted that the problem is of
importance in the design of electrical networks, and explained
the algorithm by means of an example with 40 vertices.
Borůvka’s algorithm turns out to be rather efficient, and is the
basis of even faster algorithms.
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Minimum spanning tree (3)

An alternative algorithm for solving the same problem was
proposed by the Czech mathematician Vojtěch Jarník in 1930.
The problem was again formulated in an algebraic way, only the
end of the paper provides an intuitive interpretation: There are
n balls connected by 1

2n(n − 1) rods of pairwise distinct
weights. The goal is to remove some of these rods in such
a way that the balls still hold together, and the mass of the
remaining rods is as small as possible.
Jarník’s algorithm in graph-theoretical language: Begin with an
arbitrary vertex, and find the shortest edge incident with this
vertex, giving rise to a tree with two vertices. Add the shortest
edge joining the tree to a vertex that is not included in the tree.
Repeat this step until obtaining a tree containing all vertices.
The algorithm is often called Prim’s algorithm after Robert Clay
Prim, who discovered it independently in 1957.
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Major universities in Czechia in the interwar period

Prague:
Czech University in Prague (before 1920) / Charles
University (after 1920)
German University in Prague
Czech Technical University in Prague
German Technical University in Prague

Brno:
Masaryk University (founded 1919)
Czech Technical University in Brno
German Technical University in Brno

Czech universities were closed after the German occupation in
1939, and reopened only in 1945. German universities became
subordinated to the German Ministry of Education, and were
abolished in 1945.
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Otakar Borůvka (1899–1995) and Vojtěch Jarník
(1897–1970)
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Dénes Kőnig – pioneer of graph theory

Author of first textbook in graph theory: Theorie der endlichen
und unendlichen Graphen (1936, republished 1950, 1986);
English translation Theory of Finite and Infinite Graphs (1990)
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The status of graph theory in the 1930s (1)

Paul Erdős in 1977:
. . . I cannot help feeling sorry that Dénes Kőnig did not live to see the
present flowering of graph theory to which he contributed so much.
I myself got interested in graph theory when I was in high school and
saw a paper by Kőnig published in the mathematical magazine for
high school students. . . .
It is curious how little graph theory and combinatorial analysis was
appreciated in those early dark ages. A friend of my parents,
a statistician, once said about Dénes Kőnig: “He is great in his art but
his art is so small." Ten years later J. H. C. Whitehead, the great
English topologist, said about a graph theorist: “He works in the
slums of topology." When I first got to Princeton in 1938, I was
surprised how many of the topologists looked down upon the four
colour problem and considered it an unimportant side issue.
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The status of graph theory in the 1930s (2)

William Thomas Tutte in the introduction to the English
translation of Kőnig’s textbook:
But the honour of presenting Graph Theory to the mathematical world
as a subject in its own right, with its own textbook, belongs to Dénes
Kőnig. Low was the prestige of Graph Theory in the Dirty Thirties. . . .
It was the so-called science of trivial and amusing problems for
children, problems about drawing a geometrical figure in a single
sweep of the pencil, problems about threading mazes, and problems
about colouring maps and cubes in cute and crazy ways. It was too
hastily assumed that the mathematics of amusing problems must be
trivial, and that if noticed at all it need not be rigorously established.
Students tempted by Graph Theory would be advised by their
supervisors to turn to something respectable or even useful, like
differential equations. I am reminded that my own most recent
research in Graph Theory has involved differential equations.
Mathematics is One, after all.
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